
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Partial Planning Reinforcement Learning: Final Report

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

This project explored several problems in the areas of reinforcement learning, probabilistic planning, and transfer 

learning. In particular, it studied Bayesian Optimization for model-based and model-free reinforcement learning, 

transfer in the context of model-free reinforcement learning based on hierarchical Bayesian framework, 

probabilistic planning based on monte-carlo tree search, and new algorithms for learning task hierarchies. The 

algorithms were empirically evaluated in real-time strategy games and other standard benchmark tasks and were 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

31-08-2012

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Reinforcement Learning, Bayesian Optimization, Active Learning, Action Model Learning, Decision Theoretic Assistance

Prasad Tadepalli, Alan Fern

Oregon State University

Office of Sponsored Programs

Oregon State University

Corvallis, OR 97331 -2140

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-09-1-0153

611102

Form Approved OMB NO. 0704-0188

55667-NS.11

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Prasad Tadepalli

541-737-5552

3. DATES COVERED (From - To)

1-Jun-2009

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

- 31-May-2012



Partial Planning Reinforcement Learning: Final Report

Report Title

ABSTRACT

This project explored several problems in the areas of reinforcement learning, probabilistic planning, and transfer learning. In particular, it 

studied Bayesian Optimization for model-based and model-free reinforcement learning, transfer in the context of model-free reinforcement 

learning based on hierarchical Bayesian framework, probabilistic planning based on monte-carlo tree search, and new algorithms for 

learning task hierarchies. The algorithms were empirically evaluated in real-time strategy games and other standard benchmark tasks and 

were shown to perform better than the state of the art approaches. The project also developed new theoretical frameworks for learning 

deterministic action models and for decision theoretic assistance and proved new formal results in these areas. The project helped graduate 

two Ph.D. students and partially funded the research of two other students.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of 

the project to the date of this printing.  List the papers, including journal references, in the 

following categories:

PaperReceived

Neville Mehta, Soumya Ray, Prasad Tadepalli, Thomas G. Dietterich. Automatic Discovery and 

Transfer of Task Hierarchies in Reinforcement Learning, Association for the Advancement of Artificial 

Intelligence,  (04 2011): 35. doi:

2011/08/29 19:18:26 4

TOTAL:  1

(b) Papers published in non-peer-reviewed journals (N/A for none)

Number of Papers published in peer-reviewed journals:

PaperReceived

TOTAL:

Number of Papers published in non peer-reviewed journals:

1. Prasad Tadepalli, Planning and Reinforcement Learning: A Tale of Two Worlds, presented at Bellairs workshop on Model-based 

Reinforcement Learning, Spring 2009

2. Neville Mehta, Learning and Planning with Partial Models, presented at Bellairs workshop on Model-based Reinforcement Learning, 

Spring 2009

(c) Presentations

Number of Presentations:  2.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

PaperReceived

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts): 



PaperReceived

Ronald Bjarnason, Alan Fern, Prasad Tadepalli. Lower Bounding Klondike Solitaire with Monte-Carlo 

Planning, International Conference on Automated Planning and Scheduling. 2009/09/19 03:00:00, . : ,
2012/08/31 10:52:13 10

Alan Fern, Prasad Tadepalli, Aaron Wilson. Bayesian Policy Search for Multi-agent Role Discovery, 

National Conference on Artificial Intelligence. 2010/07/11 03:00:00, . : ,
2012/08/31 10:51:24 8

Alan Fern, Aaron Wilson, Prasad Tadepalli. Incorporating Domain Models into Bayesian Optimization for 

RL, European Conference on Machine Learning. 2010/09/20 03:00:00, . : ,
2012/08/22 16:03:28 9

Alan Fern, Prasad Tadepalli. A Computational Decision Theory for Interactive Assistants, AAAI Workshop 

on Interactive Game Theory and Decision Theory. 2010/07/10 03:00:00, . : ,
2012/08/22 15:25:13 7

Alan Fern, Prasad Tadepalli. A Computational Decision Theory for Interactive Assistants, Neural 

Information Processing Systems. 2010/12/06 03:00:00, . : ,
2012/08/22 15:17:21 6

Prasad Tadepalli, Alan Fern, Neville Mehta. Autonomous Learning of Action Models for Planning, Neural 

Information Processing Systems. 2011/12/12 03:00:00, . : ,
2012/08/22 14:16:22 5

Neville Mehta, Prasad Tadepalli, Alan Fern. Efficient Learning of Action Models for Planning, Workshop on 

Planning and Learning at ICAPS 2011. 2011/06/13 03:00:00, . : ,
2011/08/29 19:35:31 3

Aaron Wilson, Alan Fern, Prasad Tadepalli. Transfer Learning in Sequential Decision Problems: A 

Hierarchical Bayesian Approach, Workshop on Unsupervised and Transfer Learning at ICML 2011. 

2011/07/02 03:00:00, . : ,

2011/08/29 19:13:10 1

Aaron Wilson, Alan Fern, Prasad Tadepalli. A Behavior-based Kernel for Policy Search via Bayesian 

Optimization, Workshop on Planning and Acting with Uncertain Models, ICML 2011. 2011/07/02 03:00:00, . 

: ,

2011/08/29 19:12:04 2

TOTAL:  9

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 

PaperReceived

TOTAL:

Books

Number of Manuscripts:

PaperReceived

TOTAL:

Patents Submitted

Patents Awarded

Awards



The following paper received best student paper award at the International Conference on Automated Planning and 

Scheduling, 2009. 

Bjarnason, R., Fern, A. and Tadepalli, P., Lower Bounding Klondike Solitaire with Monte Carlo Planning, ICAPS, 2009.

Graduate Students

DisciplinePERCENT_SUPPORTEDNAME

Aaron Wilson  1.00

Nevile Mehta  0.58

Kshitij Judah  0.28

Robin Hess  0.08

 0.00

 1.94FTE Equivalent:

 4Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Prasad Tadepalli  0.05

Alan Fern  0.01

 0.06FTE Equivalent:

 2Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in 

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to 

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:  0.00......



Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Aaron Wilson

Neville Mehta

 2Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)



Scientific Progress

1. We developed and evaluated UCT-based Monte Carlo planning algorithms in Solitaire and tactical battles in real-time 

strategy games. Our approach to Solitaire yielded the first known lower bound of 35% success rate.

2. We implemented algorithms for automatic discovery of roles for agents using Bayesian policy search and successfully 

evaluated in tactical battles in RTS games. The role-specific policies were shown to transfer to similar domains. 

3. We developed new algorithms for learning task hierarchies for reinforcement learning from demonstrations. The task 

hierarchies are shown to improve convergence speed of reinforcement learning in a number of domains. 

4. We designed a model-based reinforcement learning algorithm based on Bayesian optimization and showed significantly 

faster convergence in a number of benchmark reinforcement learning domains.

5. We developed a model-free reinforcement learning algorithm based on Bayesian Optimization (BO) that takes into account 

trajectory information and significantly improves upon previous model-free BO methods for RL. 

6. We formalized the notion of partial action models and developed theory and algorithms for learning such models and 

planning with them.

7. We showed new hardness results and proved performance bounds for the effectiveness of myopic heuristics on the problem 

of decision theoretic assistance.

Technology Transfer



       Partial Planning Reinforcement Learning: Final Report 
Proposal Number 55667-NS 

Prasad Tadepalli and Alan Fern, Oregon State University 
 
1. Executive Summary 
       
      The objective of our research was to make novel advances in decision-theoretic planning,  
which is studied by two different communities, namely, automated planning and reinforcement 
learning. Both these paradigms have certain limitations. In particular, the work in AI planning 
generally assumed that the domain dynamics can be compactly described using a declarative 
action description language. It also assumed that such action descriptions are readily available to 
the planner. Both of these assumptions break down in complex stochastic domains. On the other 
hand, most work in reinforcement learning was focused on learning from simulators by trial and 
error, which is inherently inefficient. Model-free reinforcement learning ignored the aspect of 
reasoning about action models to perform better. Our objective was to develop new algorithms 
that explored the wide spectrum between the two extremes to reap the benefits of both these 
fields while overcoming their respective limitations. Our contributions fall into the following 4 
areas. The results are expanded further in the main body of the report.  
 

• Bayesian Reinforcement Learning: We developed new more powerful approaches to 
reinforcement learning (RL) by formulating the RL problem in the hierarchical Bayesian 
framework. The principal advantage of doing this is that it allows the learned knowledge 
to transfer from one task to a related task. We developed directed exploration algorithms 
based on Bayesian Optimization that take explicit account of the trajectory information. 
We also developed broadly useable computational infrastructure to study RTS games.  

• Learning Task Hierarchies and Action Models:  We developed new methods for 
designing task hierarchies by learning them from example traces of the task execution. 
This approach required us to know the action models to analyze the causal relations 
between the different actions in the trace. Hence we explored the problem of learning 
actions models and planning with them. During learning, the action models are partial or 
incomplete in that they only describe the dynamics of an action under some but not all 
conditions.  We developed new formal models for learning partial action models and 
characterized the conditions under which they are successful. 

• Monte-Carlo Planning: In many stochastic domains where compact action descriptions 
are not available, it is often possible to build a realistic simulation. Monte-Carlo 
simulations can be used to search many possible alternatives efficiently and find the best.  
We extended a Monte-Carlo Planning (MCP) approach called UCT to a number of 
complex domains that included durative actions and large action spaces and studied its 
effectiveness. We also developed a general computational infrastructure to study MCP.  

• Decision-Theoretic Assistance: We developed a new formal decision-theoretic 
framework for computer assistants that help a human user by observing his overt 
behavior and take appropriate actions to optimize his expected utility. The key problem is 
to act rationally without the full knowledge of the goals of the human user. We studied 
the complexity of this problem under different conditions as well as provided an 
approximation bound for a reasonably effective heuristic solution.  
 

Other broader impact and human resource contributions of our work included  a week-long 
course on Monte-Carlo methods in AI for undergraduates and the graduation of two Ph.D. 
students.  

       



2. Research Accomplishments 
 
In this section, we describe our main research results in more detail.  
 
2.1. Bayesian Reinforcement Learning 
        
           The problem of reinforcement learning is to learn how to act by taking actions in an 
environment and observing the outcomes and rewards. One of the main obstacles to 
reinforcement learning is that without strong prior knowledge the learning requires prohibitively 
large amount of experience before the performance is reasonable. More importantly, what is 
learned in one task does not generalize easily to the next task. Bayesian RL addresses both of 
these problems by biasing the learner with appropriate prior knowledge. The prior knowledge 
can be in the form a prior distribution over the dynamics of the domain (in model-based case) or 
on the policy, i.e., a parametric method of selecting actions given the state. The research problem 
we addressed is designing RL algorithms that allow transfer of policies from one task to another 
related task with only a reasonable amount of experience.  
 
            In particular, we developed a hierarchical Bayesian framework in which a prior 
distribution can be placed on policies, which can be improved over time by a form of Mante 
Carlo Markov Chain approach. The framework is hierarchical in the sense that the agents are 
divided into a variable number of classes according to what role they are good at playing. The 
algorithm automatically classifies agents into their classes, and assigns them roles, as well as 
creates new classes when needed. Importantly the classes and roles are shared between multiple 
tasks, so that the system is able to transfer the role-specific policies from one task to another. We 
applied this approach to a real-time strategy game domain and showed that our multiagent role 
discovery system outperforms previous best approaches. Thanks to the general Bayesian 
framework, the system can learn from expert demonstrations as well as its own random 
exploration. We showed that in hard tasks with a large number of agents, our system is able to 
transfer its policies learned from simpler tasks and perform quite well, while directly learning 
from the harder task fails completely [1].   

 
             One of the critical issues in Reinforcement Learning is the tradeoff between exploration 
and exploitation. Should an agent take the action that it knows is quite good, or should it explore 
a new action in the hope that it will uncover even better long-term rewards? We studied this 
directed exploration problem in the framework of Bayesian optimization. Bayesian Optimization 
(BO) works by carefully exploring the space of target policies by modeling the distribution of 
returns, i.e., expected long-term cumulative reward, of the policy as a function of the policy 
parameters. An effective heuristic in this paradigm is to probe the policy parameters which 
maximize the expected improvement in the returns. Previous work in applying Bayesian 
Optimization to RL treated the relationship between policy parameters and the returns as a black 
box, completely ignoring the role of the state-action trajectories traversed by the agent to obtain 
its cumulative reward. We made two contributions to enhance the power of BO to RL.  
 
            Our first contribution is a model-based approach, where we learn models of the domain 
dynamics from the trajectories. The models are used to simulate the actions and predict the 
rewards in Monte-Carlo fashion. However, the dynamics models may not be very accurate to 

2 
 



predict the returns due to the complexity of the domain. Hence we separately model the errors in 
the Monte-Carlo returns with a Gaussian process. To take into account the approximate nature of 
the model and deal with cases when the model cannot be determined exactly, we used a weighted 
combination of the above model-based approach with zero mean model-free GP with an 
adjustable weight. We showed that this approach achieves significantly faster convergence than 
many model-based and model-free RL algorithms on a number of standard benchmark domains 
[2].  Our second contribution is a model-free approach where rather than using their parameters 
to compare the two policies, we employed a behavior-based kernel to compare them. The 
behavior-based kernel takes into account the trajectory information of the policies and is 
expected to better correlate with the returns. We showed that the behavior-based kernel gives 
comparable performance to the model-based approach. Both our methods outperform every other 
competitor there is including OLPOMDP, LSPI, DYNA-Q, and Q-learning [3].  
 
2.2. Learning Task Hierarchies and Action Models 
 
           While reinforcement learning at the lowest level of primitive actions is inefficient, it can 
be made more efficient by predefining a hierarchy of tasks and subtasks and restricting the 
policies to this space.  However, the current approaches that show the superiority of task 
hierarchies start from hand-designed hierarchies. Designing hierarchies by hand is not only time 
consuming, but is also unlikely to be successful in the long run because it requires non-trivial 
insight into the task. For many tasks that we like to automate, while there may well be experts 
who can perform the task or provide a few short demonstrations, they are unlikely to have the 
machine learning expertise or patience to design the task hierarchies. This leads to the problem 
of learning efficient task hierarchies which in turn make it possible to learn good policies 
quickly, starting from a small number of expert demonstrations of the task.  
 
            In previous work, we developed and an algorithm to learn task hierarchies from observed 
expert trajectories [4]. The algorithm works by hierarchically parsing the trajectory into 
contiguous chunks, where each chunk is as long as possible without increasing the set of features 
that is logically sufficient to guarantee its execution [5]. In more recent work, we improved this 
previous algorithm in a number of ways. First, the new algorithm is able to parse trajectories 
according to their causal structure rather than relying on the contiguity of actions in a subtask. 
This allowed us to learn from trajectories even when the trajectories do not follow a well-defined 
hierarchy. In particular, the trajectories may be generated by a random search or by a non-
hierarchical planner.  Second, we made our hierarchical architecture more general than 
previously studied MAXQ architecture by allowing tasks to be defined by sequences of subtasks, 
rather than by a single subtask followed by its parent task. Our HierGen system was able to learn 
from a richer class of trajectories where the previous approach failed, and provided a more 
complete solution to the problem of learning hierarchical task structures from observation [6].  
 
            Learning task hierarchies by analyzing the causal relations between actions required us to 
have correct models of the action. In the empirical work described above, we learned action 
models using adaptations of standard machine learning algorithms. However, this raised some 
fundamental questions about best ways to learn action models if one is only interested in 
planning using them, rather than requiring to predict the consequences of arbitrary actions in 
arbitrary states. Most of us will not be able to make good predictions when non-standard actions 
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are taken, e.g., pressing the gas pedal and the break at the same time in a car or opening the 
engine, pulling out some wires and then driving. To formalize this intuition, we defined a notion 
of “adequate partial models” which are not sufficient to make sound predictions in all states, but 
are nevertheless sufficient for sound and complete planning for a goal distribution that one is 
interested in. We implemented and formalized means-ends-analysis-based planning with partial 
models [7].  
 
           We then introduced two new formal learning frameworks that captured the learning of 
partial models. The partial models are optimistic in the sense that they are at least as permissive 
as the true model. In the first Plan Prediction Mistakes framework, the learner is presented with 
problems to solve. The learner guarantees that adequate partial models are learned for the given 
goal distribution by making at most a polynomial number of mistakes. The partial models are 
optimistic, which guarantees that a sound planner using them makes only one kind of mistakes. 
In particular it might produce a plan that may not succeed, but never fails to return a plan when 
there is a correct plan. This allows the learner to learn from its own planning mistakes rather than 
requiring expert demonstrations ---- an important property to have for autonomous agents. We 
characterize sufficient conditions for exact learnability with at most polynomial number of 
mistakes in this framework. In the second Planned Exploration framework, which we also 
introduced, the learner designs its own planning problems to eliminate ambiguities in its models. 
Here we characterize the (stronger) conditions under which the learner succeeds to learn 
adequate models with only a polynomial number of planning attempts. In both cases, we present 
positive results for some concrete classes that generalize STRIPS operators with conditional 
effects and satisfy the sufficient conditions [8].   
 
2.3. Monte-Carlo Planning  
 
A big weakness of the most popular approaches to reinforcement learning is that they seek to 
completely eliminate search and reduce problem solving to reactive control. Unfortunately in 
challenging problems like military logistics and even relatively simple combinatorial puzzles and 
games like chess, this is demonstrably impossible. What is needed is the ability to improve 
solutions, given more time. Unfortunately the classical planning approaches try to find a sound 
plan or an optimal plan, but do not usually have control over the computation time. Moreover 
they require action models in a planning description language which are often unavailable. 
Monte-Carlo Planning (MCP) improves upon both planning and reinforcement learning by 
working with simulators rather than requiring action models, and by using more simulation time 
when available to improve the quality of the solutions. In particular, recently the UCT algorithm 
based on MCP was able to achieve impressive performance in the game of Go. 
 
We found that an algorithm based on ensemble UCT performs very well on Klondike Solitaire 
winning more than 35% of games which is the current record [9]. Prompted by this success, we 
conducted a large empirical study of ensembles for MCP. In particular, we considered the 
potential benefits of using ensembles of trees produced by independent runs of the UCT 
algorithm for making decisions. We conducted experiments in 6 domains, encompassing a 
variety of characteristics, for a large range of ensemble and tree sizes. Our results demonstrated 
that given a multi-core architecture, the approach is extremely effective at improving 
performance per unit time. Given a single-core machine the approach is extremely effective at 
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improving performance per unit space. Finally, we found that the approach did not typically lead 
to improved performance per unit time on a single core system, which weakly conflicts with 
prior results on Go and Solitaire. This work gave the first thorough evaluation of ensemble MCP, 
providing a much clearer idea about the general effectiveness of the approach [10].  
 
2.4. Decision Theoretic Assistance 
 
            One of the goals of our work is to develop the theory needed to attack practical 
applications of planning technology in real world domains. Many such real world applications 
involve human-computer collaboration. This observation led us to more formally study the 
problem of human-computer interaction in a decision-theoretic setting. In particular, we 
formalized the problem of interactively assisting an agent whose goal is hidden, but whose 
actions are observable, as is typically the case in a variety of computer applications. We 
formalized this problem as Hidden Goal Markov Decision Process (HGMDP) and showed that 
although it is only a special case of Partially Observable Markov Decision Process (POMDP), it 
remains PSPACE-complete in the worst case. However, there exist some interesting special 
cases when the human agent is restricted to follow a stricter protocol. In particular, we 
introduced a model called Helper Action MDP (HAMDP), where the assistant's action must be 
accepted by the agent when it is helpful, and is otherwise ignored without cost. We showed that 
there is a simple myopic policy for HAMDPs which achieves a regret bounded by the entropy of 
the goal distribution when compared to an omniscient assistant.  A variation of this policy was 
shown to achieve worst-case regret that is logarithmic in the number of goals for any goal 
distribution. We also derived a special case of HAMDPs which is NP-complete and another class 
where the complexity reduces to P [11, 12].  
  
3. Infrastructure and Human Resource Developments  
 
In addition to the above research accomplishments, we also contributed to the following 
infrastructure and human resource developments.  
 
3.1. Development of Real-Time Strategy Game Infrastructure: We have significantly 
enhanced our infrastructure for an AI interface to the real-time strategy (RTS) game engine 
Stratagus. The new infrastructure, StratagusAI, is publically available at 
http://beaversource.oregonstate.edu/projects/stratagusai and implements a socket-based TCP/IP 
interface for playing the entire game via an AI agent. The interface provides access to all 
observations and commands that are available to a human player. The interface also provides 
mechanisms for restarting and running experiments in fast mode.  

 
3.2. Development of a Simulation-Based Planning Library: We built a generic library for 
MCP algorithms. The library has standard APIs for simulators, environments, and planning 
algorithms. The library currently contains simulators for 8 diverse environments: Backgammon, 
Connect 4, Clue, Yatzhee, EWN, Biniax, Havannah, and Bird Conservation Management. It also 
includes a generic implementation of the full family of UCT algorithms that we have developed 
making it easy to experiment with different ensemble sizes and levels of sparseness. This 
infrastructure was used for the course described below and will be made broadly available in the 
near future.   
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3.3. Course on Monte-Carlo Methods in AI:  We conducted our first spring break course on 
Monte Carlo methods in Artificial Intelligence in 2012 (MCAI-2012).  We received 73 
applications and accepted 19 students. We were able to recruit a diverse class of students 
including 9 women and 10 men; 2 native americans, 1 hispanic/latino, 1 native hawaiian, and 2 
asians.  We developed a class project around the problem of managing the endangered Red 
Cockaded Woodpecker. The course consisted of a mix of class room lectures by faculty 
including Fern and Tadepalli as well as hands-on lab assignments and a final project. Overall, the 
class was a big success, and we look forward to offering it again next spring. The students were 
fully supported by NSF under an infrastructure grant: http://web.engr.oregonstate.edu/mcai 

 
3.4. Human Development: The current project led to the successful graduation of two Ph.D. 
students, Neville Mehta and Aaron Wilson.  
 
4. Conclusions and Future Work 
 
AI Planning and Reinforcement Learning attack the same broad problem of acting under 
uncertainty, but make very different assumptions and simplifications. In the current work, we 
explored the vast middle ground by considering variations and hybrids of both of these 
approaches, which allowed us to tackle a broader class of problems. We reformulated 
reinforcement learning in the hierarchical Bayesian framework which allowed us to generalize 
and transfer its results from one task to another and also devise more directed approaches to 
exploration. We employed causal analysis of trajectories to learn task hierarchies, which in turn 
are used to speed up reinforcement learning. We studied formal frameworks for learning action 
models from interaction, a problem which is mostly ignored in both planning and reinforcement 
literatures. We empirically studied variations of Monte-Carlo Planning, which facilitates anytime 
planning behavior using only a simulator, thus going beyond the classical approaches to 
reinforcement learning and planning. Finally our decision-theoretic assistance framework studied 
the theoretical properties of planning in the context of assistive systems, nicely illustrating the 
advantages of going beyond the dichotomy of planning and reinforcement learning.  
 
One important problem we have not tackled in this project is that of speedup learning, or 
improving the anytime performance of planners with experience. With the availability of 
reasonably good anytime planning algorithms such as UCT, it is vitally important that the 
learning algorithms improve their planning performance over time by learning appropriate 
heuristics or generalized value functions. This is a woefully understudied problem especially in 
the context of stochastic and adversarial environments. We believe that many of the algorithmic 
ideas studied in this project including the learning of action models and analyzing their 
interaction, hierarchical Bayesian models and Bayesian inference, and variations of Monte-Carlo 
Planning would be useful in this endeavor.   
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